English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Bioscience and Bioengineering 2018-Jul

Nuclear magnetic resonance- and gas chromatography/mass spectrometry-based metabolomic characterization of water-soluble and volatile compound profiles in cabbage vinegar.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Satoru Ishihara
Takashi Inaoka
Toshihide Nakamura
Keitarou Kimura
Yasuyo Sekiyama
Satoru Tomita

Keywords

Abstract

Non-targeted metabolomic analyses employing nuclear magnetic resonance- and gas chromatography/mass spectrometry-based techniques were applied for an in-depth characterization of cabbage vinegar, an original agricultural product made from cabbage harvested in Tsumagoi, Japan. Water-soluble and volatile metabolite profiles of cabbage vinegar were compared with those of various vinegars: rice vinegar, grain vinegar, apple vinegar, and black vinegar (Japanese kurozu made of brown rice). Principal component analysis (PCA) of the water-soluble metabolites indicated that cabbage vinegars belonged to an isolated class by the contributions of fructose, pyroglutamic acid, choline, and methiin (S-methylcysteine sulfoxide). Regarding the volatile compounds, the PCA data represented that rice, black, and apple vinegars were characterized by most of the dominant volatiles, such as acetate esters, alcohols, ketones, and acids. Cabbage and grain vinegars were included in the same class although these two vinegars have different flavors. Orthogonal partial least squares-discrimination analysis exhibited the differences in volatile compound profile between cabbage and grain vinegars, revealing that cabbage vinegars were characterized by the presence of sulfides (dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide), nitriles (allyl cyanide and 4-methylthio-butanenitrile), 3-hexene-1-ol, and crotonic acid. The time-course changes in these highlighted compounds during the acetic acid fermentation of cabbage vinegar suggested that pyroglutamic and crotonic acids were produced through fermentation, whereas choline, methiin, sulfides, nitriles, and 3-hexene-1-ol were derived from cabbage, suggesting the key role of these compounds in the unique taste and flavor of cabbage vinegar.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge