English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genes to Cells 2009-Aug

Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Takeshi Inagaki
Makoto Tachibana
Kenta Magoori
Hiromi Kudo
Toshiya Tanaka
Masashi Okamura
Makoto Naito
Tatsuhiko Kodama
Yoichi Shinkai
Juro Sakai

Keywords

Abstract

Histone H3 lysine 9 (H3K9) methylation is a crucial epigenetic mark of heterochromatin formation and transcriptional silencing. Recent studies demonstrated that most covalent histone lysine modifications are reversible and the jumonji C (JmjC)-domain-containing proteins have been shown to possess such demethylase activities. However, there is little information available on the biological roles of histone lysine demethylation in intact animal model systems. JHDM2A (JmjC-domain-containing histone demethylase 2A, also known as JMJD1A) catalyses removal of H3K9 mono- and dimethylation through iron and alpha-ketoglutarate dependent oxidative reactions. Here, we demonstrate that JHDM2a also regulates metabolic genes related to energy homeostasis including anti-adipogenesis, regulation of fat storage, glucose transport and type 2 diabetes. Mice deficient in JHDM2a (JHDM2a-/-) develop adult onset obesity, hypertriglyceridemia, hypercholesterolemia, hyperinsulinemia and hyperleptinemia, which are hallmarks of metabolic syndrome. JHDM2a-/- mice furthermore exhibit fasted induced hypothermia indicating reduced energy expenditure and also have a higher respiratory quotient indicating less fat utilization for energy production. These observations may explain the obesity phenotype in these mice. Thus, H3K9 demethylase JHDM2a is a crucial regulator of genes involved in energy expenditure and fat storage, which suggests it is a previously unrecognized key regulator of obesity and metabolic syndrome.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge