English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2019-Sep

Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hongkui Wu
Gang Liu
Yaoli He
Jing Da
Bingqing Xie

Keywords

Abstract

Diabetic cardiomyopathy (DCM) is one of the major cardiac complications in diabetic patients and a major reason for the death of diabetic patients. Obeticholic acid (OCA) is a semi-synthetic bile acid analogue. The objective of the present study was to investigate the possible cardio-protective effect of OCA against DCM. db/db diabetic mice were given OCA with or without injection of LV-short hairpin farnesoid X receptor (shFXR), and general glucose and lipid metabolism, myocardial morphology and function, myocardial fibrosis, inflammation and oxidative stress were evaluated. We found that OCA significantly ameliorated metabolic dysfunctions. Moreover, OCA attenuated morphological injury of cardiac tissue, restored the abnormal changes of hemodynamic variables and echocardiographic parameters. The Sirius-Red staining of cardiac tissue and mRNA expression of fibrotic biomarkers, including connective tissue growth factor, osteopontin, Transforming growth factor-β1, atrial natriuretic peptide, Collagen Ⅰ, and Collagen Ⅲ were decreased by OCA. Systemic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were reduced by OCA. Moreover, OCA decreased oxidant products and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and the expression and activities of antioxidant enzymes. Injection of LV-shFXR downregulated FXR expression and inhibited all these beneficial effects of OCA. FXR is major target that mediated that beneficial effect of OCA. In summary, FXR/Nrf2 signaling was involved in OCA-induced amelioration of metabolic disorder, oxidative stress, inflammation, fibrosis and myocardial dysfunction. Our findings provide new evidence for the interaction of FXR and Nrf2 signaling and novel option for the intervention of DCM.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge