English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the Science of Food and Agriculture 2012-May

Ochratoxigenic moulds and effectiveness of grape field antifungals in a climatic change scenario.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Esther García-Cela
Antonio J Ramos
Vicent Sanchis
Sonia Marin

Keywords

Abstract

BACKGROUND

The presence of ochratoxin A (OTA) in grapes and grape derivatives has been reported mainly in the Mediterranean area. Consequently, great efforts are being made to prevent the growth of Aspergillus on grapes. However, the European Commission suggests that climate change may result in increased temperatures and longer drought periods in southern Europe. Therefore the aim of this study was to investigate how ochratoxigenic fungal growth and the efficiency of fungicides used at present might be affected by environmental conditions predicted with climate change.

RESULTS

The effectiveness of grape field antifungals (Switch, Flint Max and Equisetum arvense extract) under two alternating temperature, photoperiod and relative humidity (RH) scenarios (current: 20/30 °C, 16 h light/8 h darkness, 80% RH; predicted: 25/37 °C, 16 h light/8 h darkness, 75% RH) on the growth and OTA production of two Aspergillus carbonarius isolates and one Aspergillus ochraceus isolate on grapes was investigated.

CONCLUSIONS

Predicted conditions reduced A. carbonarius and limited A. ochraceus growth. Antifungals reduced fungal infection (by 40-84%), although no correlation between climatic conditions and effectiveness of the antifungals was found. However, Switch always showed the greatest reduction and E. arvense (0.02 g mL(-1) extract) the least. Higher temperatures affected OTA production by the isolates in different ways. In general, Switch and Flint Max reduced OTA production, while E. arvense stimulated it.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge