English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Intercultural Ethnopharmacology

Ocimum basilicum extract exhibits antidiabetic effects via inhibition of hepatic glucose mobilization and carbohydrate metabolizing enzymes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chinelo Ezeani
Ifeoma Ezenyi
Theophine Okoye
Charles Okoli

Keywords

Abstract

OBJECTIVE

Ocimum basilicum L (Lamiaceae) is used as a traditional remedy for different ailments, including diabetes mellitus. This study investigated the antidiabetic effects of an extract of aerial parts of O. basilicum.

METHODS

Antihyperglycemic effect of the extract was determined by its effects on α-amylase and α-glucosidase in vitro, while antidiabetic properties were studied in alloxan induced diabetic rats treated for 28 days with extract and compared to those treated with oral metformin (150 mg/kg). The study and analysis was conducted between 2014 and 2015.

RESULTS

The treatment with 100 and 200 mg/kg extract significantly (P < 0.05) reduced fasting blood glucose concentration and slightly increased mean body weight in treated groups. Oral glucose tolerance was also significantly (P < 0.05, 0.001) improved in 100 and 400 mg/kg extract-treated groups. The extract caused a dose-dependent increase in liver glycogen content, while it decreased alanine transferase (18.9-30.56%) and aspartate transferase (6.48-34.3%) levels in a non-dose-dependent manner. A dose of 100 mg/kg also reduced serum cholesterol and triglycerides by 19.3 and 39.54%, compared to a 2.6% reduction of cholesterol seen in the metformin-treated group. The extract was observed to produce significant (P < 0.001) concentration-dependent inhibition of α-glucosidase (35.71-100%) and also α-amylase (23.55-81.52%), with estimated inhibitory concentration values of 1.62 and 3.86 mg/mL, respectively.

CONCLUSIONS

The antidiabetic properties of the extract may be due to its ability to suppress endogenous glucose release, inhibit glycogenolysis and/or stimulate glycogenesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge