English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Sciences 2018-Jan

Omega-3 Polyunsaturated Fatty Acids Time-Dependently Reduce Cell Viability and Oncogenic MicroRNA-21 Expression in Estrogen Receptor-Positive Breast Cancer Cells (MCF-7).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lauren LeMay-Nedjelski
Julie K Mason-Ennis
Amel Taibi
Elena M Comelli
Lilian U Thompson

Keywords

Abstract

The omega-3 polyunsaturated fatty acid (n-3 PUFA), α-linolenic acid (ALA), and its metabolites, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), independently reduce the growth of breast cancer cells in vitro, but the mechanisms, which may involve microRNA (miRNA), are still unclear. The expression of the oncomiR, miR-21, is reduced by DHA treatment, but the effects of ALA on miR-21, alone or combined with EPA and DHA under physiologically relevant concentrations, have not been investigated. The effects of ALA alone and +/-EPA and DHA at the blood molar ratios seen in either humans (1.0:1.0:2.5, ALA:EPA:DHA) or mice (1.0:0.4:3.1, ALA:EPA:DHA) post flaxseed oil consumption (containing ALA) were assessed in vitro in MCF-7 breast cancer cells. Cell viability and the expression of miR-21 and its molecular target, phosphatase and tension homolog (PTEN, gene and protein), at different time points, were examined. At 1, 3, 48 and 96 h ALA alone and 24 h animal ratio treatments significantly reduced MCF-7 cell viability, while 1 and 3 h ALA alone and human and animal ratio treatments all significantly reduced miR-21 expression, and 24 h animal ratio treatment reduced miR-21 expression; these effects were not associated with changes in PTEN gene or protein expressions. We showed for the first time that ALA alone or combined with EPA and DHA at levels seen in human and animal blood post-ALA consumption can significantly reduce cell viability and modulate miR-21 expression in a time- and concentration-dependent manner, with the animal ratio containing higher DHA having a greater effect. The time dependency of miR-21 effects suggests the significance of considering time as a variable in miRNA studies, particularly of miR-21.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge