English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cold Spring Harbor perspectives in medicine 2014-Feb

Oncogenic mechanisms in Burkitt lymphoma.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Roland Schmitz
Michele Ceribelli
Stefania Pittaluga
George Wright
Louis M Staudt

Keywords

Abstract

Burkitt lymphoma is a germinal center B-cell-derived cancer that was instrumental in the identification of MYC as an important human oncogene more than three decades ago. Recently, new genomics technologies have uncovered several additional oncogenic mechanisms that cooperate with MYC to create this highly aggressive cancer. The transcription factor TCF-3 is central to Burkitt lymphoma pathogenesis. TCF-3 is rendered constitutively active in Burkitt lymphoma by two related mechanisms: (1) somatic mutations that inactivate its negative regulator ID3, and (2) somatic mutations in TCF-3 that block the ability of ID3 to bind and interfere with its activity as a transcription factor. TCF-3 is also a master regulator of normal germinal center B-cell differentiation. Within the germinal center, TCF-3 up-regulates genes that are characteristically expressed in the rapidly dividing centroblasts, the putative cell of origin for Burkitt lymphoma, while repressing genes expressed in the less proliferative centrocytes. TCF-3 promotes antigen-independent (tonic) B-cell-receptor signaling in Burkitt lymphoma by transactivating immunoglobulin heavy- and light-chain genes while repressing PTPN6, which encodes the phosphatase SHP-1, a negative regulator of B-cell-receptor signaling. Tonic B-cell-receptor signaling sustains Burkitt lymphoma survival by engaging the PI3 kinase pathway. In addition, TCF-3 promotes cell-cycle progression by transactivating CCND3, encoding a D-type cyclin that regulates the G1-S phase transition. Additionally, CCND3 accumulates oncogenic mutations that stabilize cyclin D3 protein expression and drive proliferation. These new insights into Burkitt lymphoma pathogenesis suggest new therapeutic strategies, which are sorely needed in developing regions of the world where this cancer is endemic.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge