English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2019-Jul

Oolong Tea Extract and Citrus Peel Polymethoxyflavones Reduce Transformation of l-Carnitine to Trimethylamine-N-Oxide and Decrease Vascular Inflammation in l-Carnitine Feeding Mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pei-Yu Chen
Shiming Li
Yen-Chun Koh
Jia-Ching Wu
Meei-Ju Yang
Chi-Tang Ho
Min-Hsiung Pan

Keywords

Abstract

Carnitine, a dietary quaternary amine mainly from red meat, is metabolized to trimethylamine (TMA) by gut microbiota and subsequently oxidized to trimethylamine-N-oxide (TMAO) by host hepatic enzymes, flavin monooxygenases (FMOs). The objective of this study aims to investigate the effects of flavonoids from oolong tea and citrus peels on reducing TMAO formation and protecting vascular inflammation in carnitine-feeding mice. The results showed that mice treated with 1.3% carnitine in drinking water significantly (p < 0.05) increased the plasma levels of TMAO compared to control group, whereas the plasma TMAO was remarkedly reduced by flavonoids used. Meanwhile, these dietary phenolic compounds significantly (p < 0.05) decreased hepatic FMO3 mRNA levels compared to carnitine only group. Additionally, oolong tea extract decreased mRNA levels of vascular inflammatory markers such as tissue necrosis factor-alpha (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. Polymethoxyflavones significantly lowered the expression of VCAM-1 and showed a decreasing trend in TNF-α and E-selectin mRNA expression compared to the carnitine group. Genus-level analysis of the gut microbiota in the cecum showed that these dietary phenolic compounds induced an increase in the relative abundances of Bacteroides. Oolong tea extract-treated group up-regulated Lactobacillus genus, compared to the carnitine only group. Administration of polymethoxyflavones increased Akkermansia in mice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge