English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Optics Letters 2010-Sep

Optical spectroscopy and energy transfer in amorphous AlN-doped erbium and ytterbium ions for applications in laser cavities.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Muhammad Maqbool
Tyler R Corn

Keywords

Abstract

Sputter-deposited thin-film amorphous AlN:Er (1 at. %) emits at 554 and 561 nm as a result of (2)H(11/2)→(4)I(15/2) and (4)S(3/2)→(4)I(15/2) transitions. AlN:Yb (1 at. %) gives a weak emission peak at 966 nm as a result of (2)F(5/2)→(2)F(7/2). The codoping of Er and Yb in AlN results in energy transfer from Er(+3) to Yb(+3) and enhances the Yb(+3) emissions by an order of magnitude. Transfer of electrons occurs from the (4)S(3/2) state of Er(+3) to the (2)F(5/2) state of Yb(+3). The weak emission from Yb(+3), when excited by a 532 nm laser in the absence of Er(+3), confirms that the luminescence enhancement in ytterbium is due to energy transfer and not to direct green light excitation by the erbium emission. A possibility of population inversion and a four-level laser cavity formation exists in the Er(+3)-Yb(+3) system.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge