English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inflammopharmacology 2019-Sep

Oridonin attenuates carrageenan-induced pleurisy via activation of the KEAP-1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF-κB pathway in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Huahong Yang
Jingbo Huang
Yanli Gao
Zhongmei Wen
Liping Peng
Xinxin Ci

Keywords

Abstract

The classic NLRP3 inflammasome and NF-κB molecular pathways are activated in many inflammatory-related diseases, such as pleurisy. Because oridonin (Ori) has been indicated as a covalent NLRP3 inhibitor with strong anti-inflammasome activity, we herein aimed to assess the effects of Ori in a mouse model of carrageenan (CAR)-induced pleurisy. The results showed that CAR caused hemorrhaging and exudation of lung tissues and the release of inflammatory factors (TNF-α, IL-6 and IL-1β), effects that were significantly reduced by treatment with Ori. In addition, increased neutrophil infiltration, protein concentrations and volumes were found in the exudates of the CAR group, and these phenomena were suppressed by Ori treatment. Regarding cellular pathways, Ori could alleviate the CAR-activated NF-κB and TXNIP/NLRP3 pathways. Additionally, oxidative stress was shown to be involved in the pathogenesis of pleurisy, but possible mechanisms remain to be explored. Herein, Ori reversed the CAR-induced depletion of GSH and SOD and the CAR-induced increases in ROS, MPO and MDA levels. Furthermore, Ori inhibited NOX-4 levels, initiated the dissociation of KEAP-1 from Nrf2, activated the downstream genes HO-1 and exerted antioxidative effects on CAR-induced pleurisy. In conclusion, Ori conferred protection against CAR-induced pleurisy via Nrf2-dependent antioxidative and NLRP3-dependent anti-inflammatory properties.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge