English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Physiology and Biochemistry 2014-May

Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Claudia Wiza
Alexandra Chadt
Marcel Blumensatt
Timo Kanzleiter
Daniella Herzfeld De Wiza
Angelika Horrighs
Heidi Mueller
Emmani B M Nascimento
Annette Schürmann
Hadi Al-Hasani

Keywords

Abstract

BACKGROUND

Silencing proline-rich Akt substrate of 40-kDa (PRAS40) impairs insulin signalling in skeletal muscle.

OBJECTIVE

This study assessed the effects of over-expressing wild type or mutant AAA-PRAS40, in which the major phosphorylation sites and mTORC1-binding site were mutated, on insulin signalling in skeletal muscle.

RESULTS

Over-expression of WT-PRAS40, but not AAA-PRAS40, impaired the insulin-mediated activation of the mTORC1-pathway in human skeletal muscle cells (hSkMC). However, insulin-mediated Akt-phosphorylation was increased upon over-expression of WT-PRAS40 both in hSkMC and mouse skeletal muscle. Also over-expression of AAA-PRAS40 had an insulin-sensitizing effect, although to a lesser extent as WT-PRAS40. The insulin-sensitizing effect associated with increased IRS1 protein abundance and inhibition of proteasome activity. Finally, over-expression of WT-PRAS40 reversed hyperinsulinemia-induced insulin resistance.

CONCLUSIONS

This study identifies PRAS40 as a regulator of insulin sensitivity in hSkMC. In contrast to the mTORC1-pathway, the insulin-sensitizing action of PRAS40 occurs independent of binding of PRAS40 to the mTORC1-complex.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge