English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The Journal of investigative dermatology 2016-Oct

Overexpression of PRAS40(T246A) in the Proliferative Compartment Suppresses mTORC1 Signaling, Keratinocyte Migration, and Skin Tumor Development.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Okkyung Rho
Jaya Srivastava
Jiyoon Cho
John DiGiovanni

Keywords

Abstract

The proline-rich Akt (v-akt murine thymoma viral oncogene homolog 1) substrate of 40 kDa (PRAS40), an inhibitory component of the mTORC1 complex, was identified as an Akt substrate through phosphorylation at Thr246. Phosphorylation at this site releases PRAS40 from the mammalian/mechanistic target of rapamycin complex 1 (mTORC1) complex allowing increased activity. Targeted expression of a mutant form of PRAS40 (PRAS40(T246A)) in basal keratinocytes of mouse epidermis (BK5.PRAS40(T246A) mice) has allowed further examination of mTORC1-specific signaling in epithelial carcinogenesis. BK5.PRAS40(T246A) mice were resistant to 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal hyperproliferation and skin tumor development. In transgenic mice, PRAS40(T246A) remained bound to raptor in keratinocytes even after treatment with TPA, consistent with reduced mTORC1 signaling and altered levels of cell cycle proteins. BK5.PRAS40(T246A) mice also displayed attenuated skin inflammation in response to TPA. Inhibition of mTORC1 in keratinocytes significantly inhibited their migration in vitro and, in addition, inhibited 12-O-tetradecanoylphorbol-13-acetate-induced proliferation and migration of bulge-region stem cells in vivo. Furthermore, targeted inhibition of mTORC1 in BK5.PRAS40(T246A) mice resulted in delayed wound healing. Decreased keratinocyte migration and impaired wound healing correlated with altered expression of epithelial-mesenchymal transition (EMT) markers and reduced smad signaling. Collectively, the current data using this unique mouse model provide further evidence that mTORC1 signaling in keratinocytes regulates key events in keratinocyte function and epithelial cancer development.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge