English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytopathology 2001-Sep

Overwintering of Frankliniella fusca (Thysanoptera: Thripidae) on Winter Annual Weeds Infected with Tomato spotted wilt virus and Patterns of Virus Movement Between Susceptible Weed Hosts.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R L Groves
J F Walgenbach
J W Moyer
G G Kennedy

Keywords

Abstract

ABSTRACT Overwintering of tobacco thrips, Frankliniella fusca, was investigated on common winter annual host plants infected with Tomato spotted wilt virus (TSWV). Populations of tobacco thrips produced on TSWV-infected plants did not differ from those produced on healthy plants, whereas populations varied greatly among host plant species. The mean per plant populations of F. fusca averaged 401, 162, and 10 thrips per plant on Stellaria media, Scleranthus annuus, and Sonchus asper, respectively, during peak abundance in May. Adult F. fusca collected from plant hosts were predominately brachypterous throughout the winter and early spring, but macropterous forms predominated in late spring. Weed hosts varied in their ability to serve as overwintering sources of TSWV inoculum. Following the initial infection by TSWV in October 1997, 75% of Scleranthus annuus and Stellaria media retained infection over the winter and spring season, whereas only 17% of Sonchus asper plants remained infected throughout the same interval. Mortality of TSWV-infected Sonchus asper plants exceeded 25%, but mortality of infected Stellaria media and Scleranthus annuus did not exceed 8%. TSWV transmission by thrips produced on infected plants was greatest on Stellaria media (18%), intermediate on Scleranthus annuus (6%), and lowest on Sonchus asper (2%). Very few viruliferous F. fusca were recovered from soil samples collected below infected wild host plants. Vegetative growth stages of Stellaria media, Sonchus asper, and Ranunculus sardous were more susceptible to F. fusca transmission of TSWV than flowering growth stages, whereas both growth stages of Scleranthus annuus were equally susceptible. In a field study to monitor the spatial and temporal patterns of virus movement from a central source of TSWV-infected Stellaria media to adjacent plots of R. sardous, the incidence of infection in R. sardous plots increased from <1% in March to >42% in June 1999. Infection levels in the Stellaria media inoculum source remained high throughout the experiment, averaging nearly 80% until June 1999 when all Stellaria media plants had senesced. Dispersal of TSWV from the inoculum source extended to the limits of the experimental plot (>37 m). Significant directional patterns of TSWV spread to the R. sardous plots were detected in April and May but not in June. R. sardous infections were detected as early as March and April, suggesting that overwintering inoculum levels in an area can increase rapidly during the spring in susceptible weed hosts prior to planting of susceptible crops. This increase in the abundance of TSWV inoculum sources occurs at a time when vector populations are increasing rapidly. The spread of TSWV among weeds in the spring serves to bridge the period when overwintered inoculum sources decline and susceptible crops are planted.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge