English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protein and Peptide Letters 2016

Oxidation and Tyrosine Nitration Induce Structural Changes and Inhibits Plasmodium falciparum Falcipain-2 Activity In Vitro.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jean B Bertoldo
Hernán Terenzi

Keywords

Abstract

Falcipain-2 (FP2) is an important hemoglobinase from the malaria parasite Plasmodium falciparum and a suitable target for the development of an antimalarial chemotherapy. Many reports have indicated that radical nitrogen species (RNS) including nitric oxide (NO) are inhibitors of P. falciparum growth and promoters of recovery from malaria symptoms. In this scenario, FP2 emerges as a potential target of RNS, since its inhibition partially hinders the parasite growth. We report that in vitro FP2 did not undergo S-nitrosylation when exposed to the NO-donor GSNO. However, it was modified by a combined mechanism of methionine oxidation and tyrosine nitration in response to SIN-1, and NaNO2- H2O2 treatment. The treatments with the nitrating agents caused a pronounced decrease in protease activity most likely induced by a disruption on the secondary and tertiary structure of FP2. Our data also demonstrate that at least four tyrosine residues were nitrated and found on the surface of the enzyme, partially or completely exposed to the solvent. Although performed in vitro, these results suggest that falcipain-2 may be a target of RNS activity and its inhibition could explain the hindering of the parasite growth when exposed to these radicals. The understanding of the molecular mechanisms involving free radicals and its inhibition activity towards FP2 may be effective in the development of antimalarial therapies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge