English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Toxicology and Environmental Health - Part A 2015

Oxidative Stress, Cytotoxicity, and Genotoxicity Induced by Methyl Parathion in Human Gingival Fibroblasts: Protective Role of Epigallocatechin-3-Gallate.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gabriella Argentin
Maurizio Divizia
Rosadele Cicchetti

Keywords

Abstract

Organophosphorous (OP) compounds are pesticides frequently released into the environment because of extensive use in agriculture. Among these, methyl parathion (mPT) recently received attention as a consequence of illegal use. The predominant route of human exposure to mPT is via inhalation, but inadvertent consumption of contaminated foods and water may also occur. The goal of this study was to investigate the in vitro effects of mPT on cells in the oral cavity and evaluate the potential protective role of epigallocathechin-3-gallate (EGCG) on these effects. Human gingival fibroblasts (HGF) were exposed to 10, 50, or 100 μ g/ml mPT for 24 h and assessed for oxidative stress, as evidenced by reactive generation of oxygen species (ROS), induction of apoptotic cell death, DNA damage (comet assay and cytochinesis-block micronucleus test), and nitric oxide (NO) production. The results showed that mPT produced significant oxidative stress, cytotoxicity, and genotoxicity and increased NO levels through stimulation of inducible NO synthase expression. Finally, data demonstrated that EGCG (10, 25, or 50 μ M) was able to inhibit the pesticide-induced effects on all parameters studied. Data indicate that cytotoxic and genotoxic effects may be associated with oxidative stress induced by mPT observed in HGF cultures and that EGCG plays a protective role via antioxidant activities.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge