English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncotarget 2018-May

Oxidized analogs of Di(1H-indol-3-yl)methyl-4-substituted benzenes are NR4A1-dependent UPR inducers with potent and safe anti-cancer activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Marisa Sanchez
Zebin Xia
Elizabeth Rico-Bautista
Xihua Cao
Michael Cuddy
David J Castro
Ricardo G Correa
Liqun Chen
Jinghua Yu
Andrey Bobkov

Keywords

Abstract

Di(1H-indol-3-yl)(4-trifluoromethylphenyl)methane (DIM-Ph-4-CF3) is an analog of orphan nuclear receptor 4A1 (NR4A1) ligand cytosporone B. We have synthesized several oxidation products of DIM-Ph-4-CF3, focusing on analogs with electron-withdrawing or donating groups at their phenyl ring 4-positions, and examined their anti-cancer activity and mechanism-of-action. Mesylates (DIM-Ph-4-X+ OMs-s) having CF3, CO2Me and Cl groups were more effective inhibitors of cancer cell viability than their precursors. 19F NMR spectroscopy and differential scanning calorimetry strongly indicated interactions of DIM-Ph-4-CF3+ OMs- with the NR4A1 ligand binding domain, and compound-induced apoptosis of prostate cancer cells was dependent on NR4A1. DIM-Ph-4-CF3+ OMs- showed robust inhibition of LNCaP prostate cancer xenografts with no apparent toxicity. In vitro and in vivo, DIM-Ph-4-CF3+ OMs- activated proapoptotic unfolded protein response (UPR) signaling in prostate cancer cells. Independently of DIM-Ph-4-CF3+ OMs-, the bulk of NR4A1 localized to the cytoplasm in various cancer cell lines, suggesting a cytoplasmic mechanism-of-action of DIM-Ph-4-CF3+ OMs- in UPR induction and cell death. In summary, the data suggest that oxidized analogs of DIM-Ph-4-CF3 possess potent and safe anti-cancer activity which is mediated through UPR signaling downstream of NR4A1 binding.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge