English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inhalation Toxicology 1999-Nov

Ozone effects on airway responsiveness, lung injury, and inflammation. Comparative rat strain and in vivo/in vitro investigations.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J A Dye
M C Madden
J H Richards
J R Lehmann
R B Devlin
D L Costa

Keywords

Abstract

Asthmatic individuals appear to be particularly sensitive to the effects of certain air pollutants-including ozone (O(3)), an oxidant ambient air pollutant-for reasons that are poorly understood. The general purpose of these studies, therefore, was to expand and improve upon toxicologic methods for assessing ozone-induced effects on the airways of the rat by (1) developing an in vivo testing procedure that allows detection of airway responsiveness changes in rats exposed to ozone; (2) identifying a strain of rat that may be inherently more sensitive to the effects of ozone; and (3) validation of an in vitro epithelial culture system to more directly assess airway cellular/subcellular effects of ozone. Using methacholine inhalation challenges, we detected increased airway responsiveness in senescent F344 rats acutely after ozone exposure (2 ppm x 2 h). We also determined that acutely after ozone exposure (0.5 ppm x 8 h), Wistar rats developed significantly greater lung injury, neutrophilic inflammation, and bronchoalveolar lavage (BAL) fluid concentrations of IL-6 than either Sprague-Dawley (SD) or F344 rats. SD rats had greater BAL fluid concentrations of prostaglandin E(2) (PGE(2)), while F344 rats consistently exhibited the least effect. Wistar rat-derived tracheal epithelial (RTE) cultures were exposed in vitro to air or ozone (0.1-1.0 ppm x 1 h), and examined for analogous effects. In a concentration-dependent manner, ozone exposure resulted in acute but minor cytotoxicity. RT polymerase chain reaction (PCR) analysis of RNA isolated from ozone-exposed cells demonstrated variable increases in steady-state gene expression of IL-6 at 4 h postexposure, while at 24 h cellular fibronectin expression (EIIIA domain) was decreased. Exposure was without effect on macrophage inflammatory protein 2 (MIP-2) or gamma-glutamyl cysteine synthetase expression. At 6 h postexposure, IL-6 synthesis and apical release appeared increased in ozone-exposed cells (1 ppm x 1 h). MIP-2 release was not significantly increased in ozone-exposed cells. At 2 h postexposure, ozone exposure resulted in minor increases in apical fibronectin, but exposure was without effect on basolateral accumulation of fibronectin. Exposure to 1.0, but not 0.1 ppm (x 1 h), increased production of cyclooxygenase (i.e., PGE(2)) and noncyclooxygenase products of arachidonic acid. Results demonstrate that multiple inflammatory mediator pathways are affected by ozone exposure. Such effects could exacerbate morbidity in individuals with preexisting airway inflammation such as asthmatics.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge