English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology 2019-Aug

Ozone phytotoxicity to Panicum maximum and Cenchrus ciliaris at Indo-Gangetic plains: an assessment of antioxidative defense and growth responses.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tsetan Dolker
Arideep Mukherjee
Shashi Agrawal
Madhoolika Agrawal

Keywords

Abstract

Two common tropical grassland species, Panicum maximum Jacq. (Guinea grass) and Cenchrus ciliaris (Buffel grass) of Indo-Gangetic plains were assessed for their responses under future level of O3 (ambient +30 ppb) using open top chambers. Plants were assessed for foliar injuries, pigments, growth, biomass accumulation, histochemical localization of reactive oxygen species (ROS), antioxidant defense system and ROS scavenging activities at two stages. Foliar injuries were noticed at an early stage in P. maximum compared to C. ciliaris. Significant reductions were observed in total chlorophyll, growth and total biomass in both species. Significant increases in contents of melondialdehyde and ascorbic acid in P. maximum while total phenolics and thiols in C. ciliaris were found. Histochemical analysis showed more production of superoxide radicals and hydrogen peroxide in leaf tissues of P. maximum compared to C. ciliaris. It can be concluded that higher level of primary antioxidants (total phenolics and thiols) along with superoxide dismutase and ascorbate peroxidase scavenged O3 effectively in C. ciliaris causing less reduction of biomass which is used as a feed for cattles. In P. maximum, more photosynthates were allocated for defense, leading to higher reduction in total biomass compared to C. ciliaris. The leaf area ratio was higher in P. maximum compared to C. ciliaris under elevated O3. The study further suggests higher susceptibility of P. maximum compared to C. ciliaris under future level of O3 exposure.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge