English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Biology and Medicine 2017-May

PEGylated long-circulating liposomes deliver homoharringtonine to suppress multiple myeloma cancer stem cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Miao Li
Fangfang Shi
Xiong Fei
Songyan Wu
Di Wu
Meng Pan
Shouhua Luo
Ning Gu
Jun Dou

Keywords

Abstract

The goal of this investigation was to evaluate the inhibiting effect of high proportion polyethyleneglycol of long-circulating homoharringtonine liposomes on RPMI8226 multiple myeloma cancer stem cells. The CD138-CD34- multiple myeloma cancer stem cells isolated from RPMI8226 cell line using magnetic activated cell sorting system were, respectively, incubated with the optimized formulation of polyethyleneglycol of long-circulating homoharringtonine liposomes and the homoharringtonine in vitro, and the multiple myeloma cancer stem cell proliferation, colony formation, and cell cycle were analyzed. The inhibition of the multiple myeloma CD138-CD34- cancer stem cell growth was investigated in non-obese-diabetic/severe-combined-immunodeficiency mice that were implanted with multiple myeloma RPMI 8226 cancer stem cells and treated with the LCL-HHT-H-PEG. The results showed that the polyethyleneglycol of long-circulating homoharringtonine liposomes significantly inhibited MM cancer stem cell proliferation, colony formation, and induced cancer stem cell apoptosis in vitro as well as MM cancer stem cell growth in non-obese-diabetic/severe-combined-immunodeficiency mice compared with the homoharringtonine. In addition, the mouse bone mineral density and the red blood cell count were significantly increased in polyethyleneglycol of long-circulating homoharringtonine liposomes group. In conclusion, the data demonstrated that the developed polyethyleneglycol of long-circulating homoharringtonine liposomes formulation may serve as an efficient therapeutic drug for suppressing CD138-CD34- multiple myeloma cancer stem cell growth by inducing cancer stem cell apoptosis in non-obese-diabetic/severe-combined-immunodeficiency mouse model. Impact statement Multiple myeloma (MM) remains largely incurable until now. One of the main reasons is that there are cancer stem cells (CSCs) in MM, which are responsible for MM's drug resistance and relapse. In this study, we wanted to extend our previous investigation22 that whether we developed the LCL-HHT-H-PEG formulation have an inhibitory effect on MM CD138-CD34-CSCs in MM CSC engrafted NOD/SCID mouse model. Our data from the present study have demonstrated the therapeutic effect of LCL-HHT-H-PEG on MM-bearing mouse model. The study represents the first attempt to demonstrate that the LCL-HHT-H-PEG formulation is available for treatment MM patients in clinic. Therefore, this finding is important and deserves publication in Experimental Biology and Medicine.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge