English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 2002-Jul

PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Joachim Drevs
Ralph Müller-Driver
Christine Wittig
Stefan Fuxius
Norbert Esser
Harald Hugenschmidt
Moritz A Konerding
Peter R Allegrini
Jeanette Wood
Jürgen Hennig

Keywords

Abstract

Antiangiogenic therapy is a promising new strategy of inhibiting tumor growthand formation of metastases. Recently, a number of compounds with different effects on tumor endothelial cells have entered clinical trials and revealed the need for diagnostic methods to detect their biological activity. Dynamic enhanced magnetic resonance imaging (dyMRI) is used in most clinical trials with antiangiogenic active compounds. We evaluated this method by using PTK787/ZK 222584, a specific inhibitor of the VEGF-receptor tyrosine kinases, which showed antitumoral and antiangiogenic activity in a murine renal cell carcinoma (RENCA) model. After intrarenal application of RENCA cells, mice developed a primary tumor and metastases to the lung and abdominal lymph nodes. After daily oral therapy for 21 days with either PTK787/ZK 222584 at a dose of 50 mg/kg or vehicle, primary tumors of all animals were analyzed by dyMRI. Gadolinium-DOTA (Dotarem) was used as a contrast agent to detect vessel permeability and contrast agent extravasation, whereas intravascular iron oxide nanoparticles (Endorem) were used to detect partial tumor blood volume. Additionally, vessel density, architecture, diameter, and blood flow velocity were investigated by appropriate methods. Surprisingly, no changes in extravasation occurred under treatment with PTK787/ZK 222584 as compared with the control group, whereas a significant decrease in vessel permeability occurred. Furthermore, an increase in partial blood volume was found in the PTK787/ZK 222584-treated group, although vessel density was reduced as seen by histology. Using the corrosion cast technique, reduction in vessel density was significant but not very pronounced and predominantly attributable to the loss of microvessels only. This finding correlated with a shift to large vessel diameters in the primary tumors of PTK787/ZK 222584-treated animals and with reduction of blood flow velocity in the tumor feeding renal artery. From these findings, we conclude that the treatment with PTK787/ZK 222584 primarily reduces the number of tumor microvessels, accompanied by a hemodynamic dilation of the remaining vessels. This dilation could influence the result of dyMRI such that no change in extravasation or even an increase in partial tumor blood volume could be observed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge