English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2004-Apr

Partial purification, kinetic analysis, and amino acid sequence information of a flavonol 3-O-methyltransferase from Serratula tinctoria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tyng-Shyan Huang
Dominique Anzellotti
Fabienne Dedaldechamp
Ragai K Ibrahim

Keywords

Abstract

Serratula tinctoria (Asteraceae) accumulates mainly 3,3'-dimethylquercetin and small amounts of 3-methylquercetin as an intermediate. The fact that 3-methylquercetin rarely accumulates in plants in significant amounts, and given its important role as an antiviral and antiinflammatory agent that accumulates in response to stress conditions, prompted us to purify and characterize the enzyme involved in its methylation. The flavonol 3-O-methyltransferase (3-OMT) was partially purified by ammonium sulfate precipitation and successive chromatography on Superose-12, Mono-Q, and adenosine-agarose affinity columns, resulting in a 194-fold increase of its specific activity. The enzyme protein exhibited an expressed specificity for the methylation of position 3 of the flavonol, quercetin, although it also utilized kaempferol, myricetin, and some monomethyl flavonols as substrates. It exhibited a pH optimum of 7.6, a pI of 6.0, and an apparent molecular mass of 31 kD. Its K(m) values for quercetin as the substrate and S-adenosyl-l-Met (AdoMet) as the cosubstrate were 12 and 45 microm, respectively. The 3-OMT had no requirement for Mg(2+), but was severely inhibited by p-chloromercuribenzoate, suggesting the requirement for SH groups for catalytic activity. Quercetin methylation was competitively inhibited by S-adenosyl-l-homo-Cys with respect to the cosubstrate AdoMet, and followed a sequential bi-bi reaction mechanism, where AdoMet was the first to bind and S-adenosyl-l-homo-Cys was released last. In-gel trypsin digestion of the purified protein yielded several peptides, two of which exhibited strong amino acid sequence homology, upon protein identification, to a number of previously identified Group II plant OMTs. The availability of peptide sequences will allow the design of specific nucleotide probes for future cloning of the gene encoding this novel enzyme for its use in metabolic engineering.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge