English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology 2015-Oct

Pb uptake and tolerance in the two selected mangroves with different root lignification and suberization.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hao Cheng
You-Shao Wang
Yong Liu
Zhi-Hong Ye
Mei-Lin Wu
Cui-Ci Sun

Keywords

Abstract

Metal pollution has been widely reported in mangrove wetlands; however, the mechanisms involved in metal detoxification by mangroves are still poorly understood. This study aimed to investigate the possible function of root lignification/suberization on Pb uptake and tolerance in mangroves. Two mangroves, Acanthus ilicifolius and Rhizophora stylosa with different root lignification/suberization were selected as plant materials; the former exhibits a thin exodermis and low lignification/suberization, while the latter possesses a thick exodermis and high lignification/suberization. A pot trial with addition of Pb was conducted to investigate the differences in Pb uptake and tolerance between the two mangroves. The experiment of rhizobox was designed to explore Pb dynamics and availabilities in the rhizosphere soils, besides, the ability of Pb uptake by the excised roots and X-ray analysis for Pb distribution within roots were also detected. The results revealed that R. stylosa exhibited relatively higher Pb tolerance together with less Pb accumulations when compared to A. ilicifolius. For both species, lower proportion of exchangeable and Carbonate Pb and higher higher Fe-Mn oxides Pb were observed in the rhizosphere zone when compared to the respective non-rhizosphere zone. The results from metal uptake by the excised roots and X-ray analysis clearly showed that the thick lignified/suberized exodermis of R. stylosa could more efficiently delay Pb entering into the roots, leading to less Pb accumulation. In summary, the present study proposes a barrier property of the lignified/suberized exodermis in dealing with the stresses of Pb.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge