English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2018-Nov

Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Harshraj Shinde
Ambika Dudhate
Daisuke Tsugama
Shashi K Gupta
Shenkui Liu
Tetsuo Takano

Keywords

Abstract

Pearl millet (Pennisetum glaucum) is the sixth-leading cereal crop and a staple food crop. It is known for its high tolerance to abiotic stress and good nutrient profile. NAC (NAM, ATAF1/2 and CUC) transcription factors (TFs) play an important role in abiotic stress tolerance. In our study, the pearl millet stress-responsive NAC TF gene PgNAC21 was characterized. Gene expression analysis revealed that PgNAC21 expression is induced by salinity stress and abscisic acid (ABA) treatment. In silico promoter analysis showed the presence of ABA response elements (ABREs) and MYB TF binding sites. A yeast one-hybrid assay indicated that a putative MYB TF in pearl millet, PgMYB1, binds to the promoter of PgNAC21. A transactivation assay in yeast cells revealed that PgNAC21 functions as a transcription activator and that its activation domain is located in its C-terminus. Relative to control plants, Arabidopsis plants overexpressing PgNAC21 exhibited better seed germination, heavier fresh weight and greater root length under salinity stress. Overexpression of PgNAC21 in Arabidopsis plants also enhanced the expression of stress-responsive genes such as GSTF6 (GLUTATHIONE S-TRANSFERASE 6), COR47 (COLD-REGULATED 47) and RD20 (RESPONSIVE TO DEHYDRATION 20). Our data demonstrate that PgNAC21 functions as a stress-responsive NAC TF and can be utilized in transgenic approaches for developing salinity stress tolerance in crop plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge