English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2015-Feb

Pectin enhances rice (Oryza sativa) root phosphorus remobilization.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xiao Fang Zhu
Zhi Wei Wang
Jiang Xue Wan
Ying Sun
Yun Rong Wu
Gui Xin Li
Ren Fang Shen
Shao Jian Zheng

Keywords

Abstract

Plants growing in phosphorus (P)-deficient conditions can either increase their exploration of the environment (hence increasing P uptake) or can solubilize and reutilize P from established tissue sources. However, it is currently unclear if P stored in root cell wall can be reutilized. The present study shows that culture of the rice cultivars 'Nipponbare' (Nip) and 'Kasalath' (Kas) in P-deficient conditions results in progressive reductions in root soluble inorganic phosphate (Pi). However, Nip consistently maintains a higher level of soluble Pi and lower relative cell wall P content than does Kas, indicating that more cell wall P is released in Nip than in Kas. P-deficient Nip has a greater pectin and hemicellulose 1 (HC1) content than does P-deficient Kas, consistent with the significant positive relationship between pectin and root-soluble Pi levels amongst multiple rice cultivars. These observations suggest that increased soluble Pi might result from increased pectin content during P starvation. In vitro experiments showed that pectin releases Pi from insoluble FePO4. Furthermore, an Arabidopsis thaliana mutant with reduced pectin levels (qua1-2), has less root soluble Pi and is more sensitive to P deficiency than the wild type (WT) Col-0, whereas NaCl-treated WT plants exhibit both an increased root pectin content and an elevated soluble Pi content during P-starvation. These observations indicate that pectin can facilitate the remobilization of P deposited in the cell wall. This is a previously unknown mechanism for the reutilization of P in P-starved plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge