English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Yakugaku Zasshi 2018

[Pharmacological Mechanisms of Boiogito and Bofutsushosan in Diabetes and Obesity Models].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shinjiro Kobayashi

Keywords

Abstract

The antihyperglycemic activities of extracts of boiogito (BOT) and bofutsushosan (BTS) were investigated in streptozotocin-induced (STZ)-diabetic mice. BOT extract containing Stephania tetrandra S. MOORE root (stephania), has more potent antihyperglycemic activity than BOT extract containing sinomenium stem (sinomenium). Extracts of stephania and astragalus root (astragalus) exert combined effects in the antihyperglycemic and insulinotropic activities of BOT extract. Fangchinoline, but not tetrandrine, in stephania plays a role in its activity. Formononetin in astragalus potentiates the actions of fangchinoline. Tetrandrine has antiangiogenic effects on choroidal vessels in STZ-diabetic rats, which are associated with the inhibition of tumor necrosis factor (TNF)-α-induced nuclear factor (NF)-κB activation. BTS extract has shown antihyperglycemic and insulinotropic activities whereas gardenia fruit (gardenia) extract in BTS has antihyperglycemic, but not insulinotropic, activity in the diabetic mice. Gardenia extract decreased the HOMA-IR level and increased insulin-stimulated 2-deoxyglucose (2-DG) uptake to skeletal muscle. The effects of gardenia extract on 2-DG uptake were associated with the upregulation of glucose transporter type 4 and Akt phosphorylation. Gardenia extract was also shown to have antihyperglycemic and insulinotropic actions in high-fat diet (HFD)-fed and STZ-diabetic mice. In addition, gardenia extract decreased the production of TNF-α and leptin, and increased the production of adiponectin in the visceral adipose tissues. In the early administration period, BTS extract increased mRNA expression levels of leptin, adiponectin, and UCP1 in brown adipose tissues in HFD-fed obese mice. With a longer duration of administration, BTS extract improved insulin resistance and subsequently reduced serum leptin and triglyceride levels in parallel with visceral adipose tissue volume and size.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge