English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Hypertension 2009-Sep

Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Matthias Löhn
Oliver Plettenburg
Yuri Ivashchenko
Aimo Kannt
Armin Hofmeister
Dieter Kadereit
Matthias Schaefer
Wolfgang Linz
Markus Kohlmann
Jean-Marc Herbert

Keywords

Abstract

Recent advances in basic and clinical research have identified Rho kinase as an important target potentially implicated in a variety of cardiovascular diseases. Rho kinase is a downstream mediator of RhoA that leads to stress fiber formation, membrane ruffling, smooth muscle contraction, and cell motility. Increased Rho-kinase activity is associated with vasoconstriction and elevated blood pressure. We identified a novel inhibitor of Rho kinase (SAR407899) and characterized its effects in biochemical, cellular, tissue-based, and in vivo assays. SAR407899 is an ATP-competitive Rho-kinase inhibitor, equipotent against human and rat-derived Rho-kinase 2 with inhibition constant values of 36 nM and 41 nM, respectively. It is highly selective in panel of 117 receptor and enzyme targets. SAR407899 is approximately 8-fold more active than fasudil. In vitro, SAR407899 demonstrated concentration-dependent inhibition of Rho-kinase-mediated phosphorylation of myosin phosphatase, thrombin-induced stress fiber formation, platelet-derived growth factor-induced proliferation, and monocyte chemotactic protein-1-stimulated chemotaxis. SAR407899 potently (mean IC(50) values: 122 to 280 nM) and species-independently relaxed precontracted isolated arteries of different species and different vascular beds. In vivo, over the dose range 3 to 30 mg/kg PO, SAR407899 lowered blood pressure in a variety of rodent models of arterial hypertension. The antihypertensive effect of SAR407899 was superior to that of fasudil and Y-27632. In conclusion, SAR407899 is a novel and potent selective Rho-kinase inhibitor with promising antihypertensive activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge