English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2003-Dec

Pharmacological profile of phytoestrogens in cerebral vessels: in vitro study with rabbit basilar artery.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Germán Torregrosa
María C Burguete
Fernando J Pérez-Asensio
Juan B Salom
José V Gil
Enrique Alborch

Keywords

Abstract

As a previous step to consider their use in the pharmacology for stroke, we investigated the effects of four phytoestrogens (i.e. genistein, daidzein, zearalanone and biochanin A) on cerebral vessels. Cerebral vascular responses were analyzed by conventional recording of isometric tension in rabbit basilar artery segments kept in organ bath under standard conditions. The four phytoestrogens elicited concentration-dependent relaxant responses of different potency in basilar artery segments previously contracted with either 5x10(-2) M KCl or 10(-4) M UTP. Neither endothelium removal, 10(-4) M N(omega)-nitro-L-arginine methyl ester (L-NAME, nitric oxide (NO) synthase inhibitor), 10(-5) M1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, selective inhibitor of NO-sensitive guanylyl cyclase), 10(-5) M 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one (NS2028, specific soluble guanylyl cyclase inhibitor), nor 10(-5) M indomethacin (prostaglandin biosynthesis inhibitor) modified the phytoestrogen-elicited vasorelaxant responses. On the other hand, Ca(2+)-elicited contractile responses were effectively inhibited in the presence of phytoestrogens. Phytoestrogens act as cerebrovascular relaxants by a mechanism which involves Ca(2+) entry blockade in the vascular smooth muscle rather than stimulation of vasorelaxant endothelium-related mechanisms such as NO/cGMP or prostaglandins.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge