English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2016-Dec

Phenylpropanoids are key players in the antioxidant defense to ozone of European ash, Fraxinus excelsior.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lorenzo Cotrozzi
Alessandra Campanella
Elisa Pellegrini
Giacomo Lorenzini
Cristina Nali
Elena Paoletti

Keywords

Abstract

Physiological and biochemical responses to ozone (O3) (150 ppb, 8 h day-1, 35 consecutive days) of two Italian provenances (Piedmont and Tuscany) of Fraxinus excelsior L. were evaluated, with special attention to the role of phenylpropanoids. Our results indicate (i) the high O3 sensitivity especially of Piedmont provenance (in terms of visible injury, water status, and photosynthetic apparatus); (ii) although the intra-specific sensitivity to O3 between provenances differs (mainly due to different stomatal behaviors since only Tuscany plants partially avoided the uptake of the pollutant gas), both provenances showed detoxification and defense mechanisms; (iii) the crucial participation of phenylpropanoids, with a key role played by flavonoids (especially quercitrin): among this class of metabolites, isoquercitrin is the principal player in the lower O3 sensitivity of Tuscany plants, together with lignins; (iv) although coumarins (typical compounds of Fraxinus) were severely depressed by O3, isofraxidin was triggered suggesting a key role in reactive oxygen species (ROS) detoxification, as well as trans-chalcone. Furthermore, the different behavior of verbascoside and oleuropein among provenances lead us to speculate on their influence in the tentatively repair or acclimation shown by Piedmont plants at the end of the exposure. Finally, the intra-specific O3 sensitivity may be also due to de novo peaks triggered by O3 not yet associated to some chemicals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge