English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Cancer Therapeutics 2007-Apr

Phospholipid hydroperoxide glutathione peroxidase plays a role in protecting cancer cells from docosahexaenoic acid-induced cytotoxicity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wei-Qun Ding
Stuart E Lind

Keywords

Abstract

Docosahexaenoic acid (DHA; 22:6, n-3) is known to exert cytotoxic effects against various types of tumors via lipid peroxidation. Whereas several enzymes influence the response of cells to oxidative stress, only one enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx-4), directly reduces lipid hydroperoxides in mammalian cells. The present study was designed to examine the involvement of GPx-4 in determining the effects of DHA addition to various human cancer cell lines. Although baseline levels of GPx-4 did not correlate with the relative sensitivity of human cancer cell lines to DHA, DHA reduced the level of protein expression of GPx-4 by at least 50% in all six lines. Knockdown of GPx-4 by small interfering RNA technique in a human ovarian cancer cell line significantly enhanced the cytotoxic effect of DHA in a time- and concentration-dependent manner. This cytotoxic effect of DHA was reversed by pretreatment with vitamin E, suggesting that the enhanced toxicity of GPx-4 knockdown is due to changes in the ability of the cells to handle oxidative stress. Neither baseline superoxide dismutase-1 nor catalase expression correlated with the relative sensitivity of the cells to DHA treatment. These results illustrate that susceptibility to the oxidative stress imposed by DHA, and possibly other therapeutic agents, is due to complex interactions among multiple antioxidant systems. The modulation of GPx-4 levels by DHA administration is of potential importance and may influence the cellular response to other oxidant stresses.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge