English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Methods in enzymology 2007

Phosphorylation assays of chemotaxis two-component system proteins in Borrelia burgdorferi.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Md A Motaleb
Michael R Miller
Chunhao Li
Nyles W Charon

Keywords

Abstract

Borrelia burgdorferi has a complex chemotaxis signal transduction system with multiple chemotaxis gene homologs similar to those found in Escherichia coli and Bacillus subtilis. The B. burgdorferi genome sequence encodes two cheA, three cheY, three cheW, two cheB, two cheR, but no cheZ genes. Instead of cheZ, B. burgdorferi contains a different CheY-P phosphatase, referred to as cheX. The multiple B. burgdorferi histidine kinases (CheA1 and CheA2) and response regulators (CheY1, CheY2, and CheY3) possess all the domains and functional residues found in E. coli CheA and CheY, respectively. Understanding protein phosphorylation is critical to unraveling many biological processes, including chemotaxis signal transduction, motility, growth control, metabolism, and disease processes. E. coli, Salmonella enterica serovar Typhimurium, and B. subtilis chemotaxis systems have been studied extensively, providing models to understand chemotaxis signaling in the Lyme disease spirochete B. burgdorferi. Both genetic approaches and biochemical analyses are essential in understanding its complex two-component chemotaxis systems. Specifically, gene inactivation studies assess the importance of specific genes in chemotaxis and motility under certain conditions. Furthermore, biochemical approaches help determine the following in vitro reactions: (1) the extent that the histidine kinases, CheA1 and CheA2, are autophosphorylated using ATP; (2) the transfer of phosphate from CheA1-P and CheA2-P to each CheY species; and (3) the dephosphorylation of each CheY-P species by CheX. We hypothesize that characterizing protein phosphorylation in the B. burgdorferi two-component chemotaxis system will facilitate understanding of how the periplasmic flagellar bundles located near each end of B. burgdorferi cells are coordinately regulated for chemotaxis. During chemotaxis, these bacteria run, pause (stop/flex), and reverse (run again). This chapter describes protocols for assessing B. burgdorferi CheA autophosphorylation, transfer of phosphate from CheA-P to CheY, and CheY-P dephosphorylation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge