English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Photochemistry and Photobiology B: Biology 2016-Nov

Photo-bioreduction of Ag+ ions towards the generation of multifunctional silver nanoparticles: Mechanistic perspective and therapeutic potential.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Satyapriya Jena
Rohit Kumar Singh
Bijayananda Panigrahi
Mrutyunjay Suar
Dindyal Mandal

Keywords

Abstract

In this article, light induced plant extract mediated one pot synthesis of silver nanoparticles (AgNPs) has been demonstrated and potential mechanistic insight in the synthesis has been investigated. Bioactive molecules containing medicinal plant Cassytha filiformis has been explored for the synthesis of silver nanoparticles. The as-synthesized silver nanoparticles were characterized by various analytical techniques including Ultraviolet-visible spectroscopy (UV-Vis), High Resolution Transmission Electron Microscopy (HR-TEM), Dynamic Light Scattering (DLS) and Fourier Transform Infrared Spectroscopy (FT-IR). Among different light sources (sunlight, room light, UV) applied the sunlight was found to be efficient external stimuli to induce rapid synthesis of AgNPs at room temperature. Modified DPPH assay indicated that polyphenolic compounds were most likely involved in the synthesis of AgNPs. Possible molecule responsible for the synthesis of AgNPs was identified, purified and characterized. Potential biomedical applications such as antibacterial, antifungal and anticancer activities of AgNPs have been evaluated. Irrespective of nature of pathogenic strains nanoparticles exhibited significant antibacterial activities against Gram positive (Streptococcus aureus) and Gram negative (Escherichia coli) bacterial pathogens. It showed higher activity on E. coli than on S. aureus. Distinct antifungal activity (MIC=5.244μg/ml) and remarkable anticancer activity (IC50=10μg/ml) was found against Candida albicans and HCT116 (colorectal carcinoma) cells, respectively. Taken together, these findings suggested that light induced plant generated silver nanoparticles could be used for various biomedical purposes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge