English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1973-Sep

Photochemical properties of mesophyll and bundle sheath chloroplasts of maize.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M B Bazzaz
Govindjee

Keywords

Abstract

Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C(4) plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at 559 nm and 553 nm, and the photoreduction of methyl viologen from H(2)O. (The rate of methyl viologen photoreduction in bundle sheath chloroplasts was 40% of that of mesophyll chloroplasts.).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge