English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of biomedical materials research. Part A 2010-Oct

Photocrosslinkable chitosan modified with angiopoietin-1 peptide, QHREDGS, promotes survival of neonatal rat heart cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fiona Rask
Susan M Dallabrida
Nesreen S Ismail
Zohreh Amoozgar
Yoon Yeo
Maria A Rupnick
Milica Radisic

Keywords

Abstract

Myocardial infarction (MI) results in the death of cardiomyocytes (CM), which causes scar formation and pathological remodeling of the heart. The delivery of healthy myocytes or bone marrow cells reduces pathological remodeling after MI, however, current cell injection methods have low cell survival rates and high cell loss. The main objective of this work was to develop a novel hydrogel that can promote survival of CMs. Photocrosslinkable azidobenzoic acid modified chitosan (Az-chitosan) was conjugated with the angiopoietin-1-derived peptide, QHREDGS. This novel peptide is thought to mediate attachment and survival responses of CM to angiopoietin-1 via integrin binding. Thin layers of Az-chitosan, Az-chitosan-QHREDGS, and Az-chitosan-DGQESHR (scrambled peptide control) were spin coated on glass slides and photocrosslinked with application of UV light (365 nm). Neonatal rat heart cells cultured up to 5 days, demonstrated significantly higher attachment and viability on Az-chitosan-QHREDGS compared to cells on other hydrogel controls. Surfaces were also stained for the CM-specific marker troponin I, demonstrating significantly higher percentage of CMs on Az-chitosan-QHREDGS compared to Az-chitosan. The cells cultivated on Az-chitosan-QHREDGS demonstrated significantly lower levels of caspase 3/7 activation after taxol treatment in comparison to cells cultivated on the control hydrogels, glass substrate, or Az-chitosan linked to RGD, an established integrin binding peptide that did not protect against apoptosis. Thus, Az-chitosan-QHREDGS supports attachment and survival of neonatal rat heart cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge