English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Organic Chemistry 2007-Aug

Photoinduced C-N bond cleavage in 2-azido-1,3-diphenyl-propan-1-one derivatives: photorelease of hydrazoic acid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rodney F Klima
Abhijit V Jadhav
Pradeep N D Singh
Mingxin Chang
Christine Vanos
Jagadis Sankaranarayanan
Mai Vu
Nazarin Ibrahim
Elaine Ross
Shaun McCloskey

Keywords

Abstract

Photolysis of 3-azido-1,3-diphenyl-propan-1-one (1a) in toluene yields 1,3-diphenyl-propen-1-one (2), whereas irradiation of 3-azido-2,2-dimethyl-1,3-diphenyl-propan-1-one (1b) results in the formation of mainly 2,2-dimethyl-1,3-diphenyl-propan-1-one. Laser flash photolysis (308 nm) of 1a,b in acetonitrile reveals a transient absorption (lambda max = approximately 310 nm) due to the formation of radicals 4a and 4b, respectively, which have lifetimes of approximately 14 micros at ambient temperature. TD-DFT calculations (B3LYP/6-31+G(d)) reveal that the first and second excited states of the triplet ketone (T1K (n,pi*) and T2K (pi,pi*)) in azide 1a are almost degenerate, at approximately 74 and 76 kcal/mol above the ground state (S0), respectively. Similarly, azide 1b has T1K and T2K 75 and 82 kcal/mol above S0, respectively. The calculated transition state for cleaving the C-N bond is located 71 and 74 kcal/mol above S0 in azides 1a and 1b, respectively. The calculated bond dissociation energies for breaking the C-N bond are 55 and 58 kcal/mol for azides 1a and 1b, respectively, making C-N bond breakage accessible from T1K in azides 1 at ambient temperature. In comparison, the irradiation of azides 1 in argon matrices at 14 K lead to the formation of the corresponding triplet alkyl nitrenes (1-n), via intramolecular energy transfer from T2K. The characterization of 1-n was supported by isotope labeling, IR spectroscopy, and molecular modeling.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge