English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Science 2015-Mar

Photosynthesizing on metal excess: copper differently induced changes in various photosynthetic parameters in copper tolerant and sensitive Silene paradoxa L. populations.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nadia Bazihizina
Ilaria Colzi
Elisabetta Giorni
Stefano Mancuso
Cristina Gonnelli

Keywords

Abstract

This work investigated Cu-induced changes in photosynthetic activity in contrasting populations of Silene paradoxa L. A metallicolous Cu-tolerant population and a non-metallicolous sensitive population were grown in hydroponics and exposed to different CuSO4 treatments for different times. Copper accumulation, MDA concentrations, and several photosynthetic parameters were measured to assess different effects of Cu exposure on plants from the two populations. A more efficient ability to photosynthesize in the presence of Cu excess was showed by the Cu-tolerant population with respect to the sensitive one. Interestingly, Cu-imposed limitations were present not only at a different degree, but also of different nature in the two populations. In the tolerant population, the most limiting factor to photosynthesis seemed to be Cu-imposed stomatal closure, whereas Cu-mediated biochemical limitation was scarce and Cu-mediated reduction in mesophyll conductance almost non-existent. In the sensitive population, Cu largely affected all the measured parameters, so that its photosynthetic activity experienced any kind of limitation, diffusional and especially biochemical. The lower Cu concentrations accumulated in the tolerant plant could be one of the factors concurring to the reported differences in photosynthetic activity, but also a higher capacity of internal detoxification and compartmentalization of the metal could not be excluded.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge