English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied and Environmental Microbiology 2003-Feb

Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mausmi P Mehta
David A Butterfield
John A Baross

Keywords

Abstract

The subseafloor microbial habitat associated with typical unsedimented mid-ocean-ridge hydrothermal vent ecosystems may be limited by the availability of fixed nitrogen, inferred by the low ammonium and nitrate concentrations measured in diffuse hydrothermal fluid. Dissolved N2 gas, the largest reservoir of nitrogen in the ocean, is abundant in deep-sea and hydrothermal vent fluid. In order to test the hypothesis that biological nitrogen fixation plays an important role in nitrogen cycling in the subseafloor associated with unsedimented hydrothermal vents, degenerate PCR primers were designed to amplify the nitrogenase iron protein gene nifH from hydrothermal vent fluid. A total of 120 nifH sequences were obtained from four samples: a nitrogen-poor diffuse vent named marker 33 on Axial Volcano, sampled twice over a period of 1 year as its temperature decreased; a nitrogen-rich diffuse vent near Puffer on Endeavour Segment; and deep seawater with no detectable hydrothermal plume signal. Subseafloor nifH genes from marker 33 and Puffer are related to anaerobic clostridia and sulfate reducers. Other nifH genes unique to the vent samples include proteobacteria and divergent Archaea. All of the nifH genes from the deep-seawater sample are most closely related to the thermophilic, anaerobic archaeon Methanococcus thermolithotrophicus (77 to 83% amino acid similarity). These results provide the first genetic evidence of potential nitrogen fixers in hydrothermal vent environments and indicate that at least two sources contribute to the diverse assemblage of nifH genes detected in hydrothermal vent fluid: nifH genes from an anaerobic, hot subseafloor and nifH genes from cold, oxygenated deep seawater.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge