English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Topics in Medicinal Chemistry 2018

Physicochemical Characterization and Antinociceptive Effect of β-cyclodextrin/Lippia pedunculosa Essential Oil in Mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Paula Dos Passos Menezes
Francielly de Oliveira Araujo
Tatianny Araujo Andrade
Igor Araujo Santos Trindade
Heitor Gomes de Araujo-Filho
Jullyana de Souza Siqueira Quintans
Lucindo Jose Quintans-Junior
Leociley Rocha Alencar Menezes
Reinaldo Nobrega de Almeida
Renan Marinho Braga

Keywords

Abstract

BACKGROUND

Some research studies have shown that Lippia pedunculosa essential oil (EOLP) has interesting biological activities. However, its low water solubility is the main challenge to achieve its therapeutic potential. In this context, Cyclodextrins (CDs) have been widely used in order to overcome this problem due to your capability to improve the physicochemical properties of drugs.

OBJECTIVE

In this perspective, the main goal of this study was to investigate how the improvement of the physicochemical properties of inclusion complexes (EOLP and β-CD) enhance the antinociceptive effect in mice.

METHODS

To achieve that, we prepared samples by Physical Mixture (PM), Paste Complexation (PC) and Slurry Complexation (SC) methods, followed by their physicochemical characterization. In addition, it was evaluated if the use of β-CD enhances the antinociceptive effect of EOLP in mice.

RESULTS

The analysis showed that rotundifolone (72.02%) was the major compound of EOLP and we found out based on DSC results that β-CD protected it from oxidation. In addition, TG techniques demonstrated that the best inclusion methods were PC and SC, due to their greater weight loss (10.8 and 11.6%, respectively) in the second stage (171-312°C), indicating that more complexed oil was released at the higher temperature than oil free. Other characteristics, such as changes in the typical crystalline form, and reduced particle size were observed by SEM and laser diffraction, respectively. The SC was the most effective complexation method, once the presence of rotundifolone was detected by FTIR. Based on that, SC method was used in all mice tests. In this regard, the number of paw licks was reduced for both compounds (all doses), but EOLP was more effective in reducing the nociceptive behavior.

CONCLUSIONS

Therefore, CDs seem not to be a good tool to enhance the pharmacological properties of EOs rich in peroxide compounds such as rotundifolone.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge