English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Food Science and Technology 2015-Aug

Physicochemical and micro-structural properties of flours, starch and proteins from two varieties of legumes: bambara groundnut (Vigna subterranea).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kuaté Giscard Kaptso
Yanou Nicolas Njintang
Mbouga Marie Goletti Nguemtchouin
Joël Scher
Joseph Hounhouigan
Carl Moses Mbofung

Keywords

Abstract

This work is part of a large study aimed to evaluate the potential of bambara groundnut (Vigna subterranea) flour as starting raw material for the preparation of a widely cherished legume-based food product known as koki. Towards this objective, the flours from two varieties of bambara groundnut along with their respective starch and protein isolates were analyzed for some physicochemical and microstructural properties. It was observed that bambara flour contained appreciable amount of proteins (24.0-25.5 g/100 g), carbohydrates (57.9-61.7 g/100 g), fiber (3.45-3.68 g/100 g) and ash (3.65-3.85 g/100 g) with marginal differences between both varieties. The properties of starch and proteins isolated from the flours were different from one variety to another. In particular the starch granules of the white variety were larger (size range 10-35 μm) and polygonal while those from the black variety were smaller (size range 6-15 μm) and spherical in shape. In addition, the peak of gelatinization temperature was higher for white variety (81.7 °C) than for black variety (77.5 °C). The gelatinization temperature and the enthalpy of gelatinization of starch in the flours were systematically lower than for the starch isolates, suggesting an interaction of starch with other components on the gelatinization process.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge