English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2018-Feb

Physiological basis of chilling tolerance and early-season growth in miscanthus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Simon Fonteyne
Hilde Muylle
Peter Lootens
Pavel Kerchev
Wim Van den Ende
Ariane Staelens
Dirk Reheul
Isabel Roldán-Ruiz

Keywords

Abstract

UNASSIGNED

The high productivity of Miscanthus × giganteus has been at least partly ascribed to its high chilling tolerance compared with related C4 crops, allowing for a longer productive growing season in temperate climates. However, the chilling tolerance of M. × giganteus has been predominantly studied under controlled environmental conditions. The understanding of the underlying mechanisms contributing to chilling tolerance in the field and their variation in different miscanthus genotypes is largely unexplored.

UNASSIGNED

Five miscanthus genotypes with different sensitivities to chilling were grown in the field and scored for a comprehensive set of physiological traits throughout the spring season. Chlorophyll fluorescence was measured as an indication of photosynthesis, and leaf samples were analysed for biochemical traits related to photosynthetic activity (chlorophyll content and pyruvate, Pi dikinase activity), redox homeostasis (malondialdehyde, glutathione and ascorbate contents, and catalase activity) and water-soluble carbohydrate content.

UNASSIGNED

Chilling-tolerant genotypes were characterized by higher levels of malondialdehyde, raffinose and sucrose, and higher catalase activity, while the chilling-sensitive genotypes were characterized by higher concentrations of glucose and fructose, and higher pyruvate, Pi dikinase activity later in the growing season. On the early sampling dates, the biochemical responses of M. × giganteus were similar to those of the chilling-tolerant genotypes, but later in the season they became more similar to those of the chilling-sensitive genotypes.

UNASSIGNED

The overall physiological response of chilling-tolerant genotypes was distinguishable from that of chilling-sensitive genotypes, while M. × giganteus was intermediate between the two. There appears to be a trade-off between high and efficient photosynthesis and chilling stress tolerance. Miscanthus × giganteus is able to overcome this trade-off and, while it is more similar to the chilling-sensitive genotypes in early spring, its photosynthetic capacity is similar to that of the chilling-tolerant genotypes later on.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge