English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry Reviews 2014

Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sylwia Zielińska
Adam Matkowski

Keywords

Abstract

Agastache is a small genus of Lamiaceae, comprising 22 species of perennial aromatic medicinal herbs. In this article, we review recent advances in phytochemical, pharmacological, biotechnological and molecular research on Agastache. The phytochemical profile of all Agastache species studied to date is generally similar, consisted of two main metabolic classes-phenylpropanoids and terpenoids. In the relatively variable essential oils, most populations of different Agastache species contain over 50 % of a phenylallyl compound-estragole. Also, other volatile compounds (methyleugenol, pulegone, menthone, isomenthone and spathulenol) were reported in various proportions. Major non-volatile metabolites belong to phenolic compounds, such as caffeic acid derivatives, especially rosmarinic acid as well as several flavones and flavone glycosides like acacetin, tilianin, agastachoside, and a rare dimeric malonyl flavone (agastachin). Two unique lignans-agastenol and agastinol-were also isolated. Terpenoids include triterpenoids of oleanane-type (maslinic acid, oleanolic acid and β-amyrin), ursane-type (ursolic acid, corosolic acid and α-amyrin), and typical plant sterols, as well as abietane-type oxidized diterpenes (e.g., agastaquinone, agastol, and others). The bioactivity of various extracts or individual compounds in vitro and in vivo include antimicrobial, antiviral and anti-mutagenic activity, cytotoxic activity to cancer cell lines, and anti-nociceptive, anti-inflammatory, anti-atherogenic, antioxidant as well as biocidal activity to several foodstuff pests. Biotechnological and molecular studies have focused on in vitro propagation and enhancing the biosynthesis of bioactive metabolites in cell or organ cultures, as well as on the expression of genes involved in phenolic biosynthesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge