English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 2005-Mar

Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Juan Huang
Eric A Schmelz
Hans Alborn
Jurgen Engelberth
James H Tumlinson

Keywords

Abstract

Interactions between the phytohormones ethylene, salicylic acid (SA), and jasmonic acid (JA) are thought to regulate the specificity of induced plant defenses against microbial pathogens and herbivores. However, the nature of these interactions leading to induced plant volatile emissions during pathogen infection is unclear. We previously demonstrated that a complex volatile blend including (E)-beta-ocimene, methyl salicylate (MeSA), and numerous sesquiterpenes was released by tobacco plants, Nicotiana tabacum K326, infected with an avirulent/incompatible strain of Pseudomonas syringae pv. tomato (Pst DC3000). In contrast, a volatile blend, mainly consisting of MeSA and two unidentified sesquiterpenes, was released by plants infected with P. syringae pv. tabaci (Pstb) in a virulent/compatible interaction. In this study, we examined the interaction of multiple pathogen stresses, phytohormone signaling, and induced volatile emissions in tobacco. Combined pathogen infection involved the inoculation of one leaf with Pst DC 3000 and of a second leaf, from the same plant, with Pstb. Combined infection reduced emissions of ocimene and MeSA compared to plants infected with Pst DC 3000 alone, but with no significant changes in total sesquiterpene emissions. In the compatible interaction, Pstb elicited a large ethylene burst with a peak emission occurring 3 days after inoculation. In contrast, the incompatible interaction involving Pst DC3000 displayed no such ethylene induction. Pstb-induced ethylene production was not significantly altered by Pst DC3000 in the combined infection. We postulated that Pstb-induced ethylene production may play a regulatory role in altering the typical volatile emission in tobacco in response to Pst DC3000 infection. To clarify the role of ethylene, we dynamically applied ethylene to the headspace of tobacco plants following infection with Pst DC3000. Consistent with Pstb-induced ethylene, exogenous ethylene reduced both ocimene and MeSA emissions, and selectively altered the ratios and amounts of induced sesquiterpene emissions. Our findings suggest that ethylene can regulate the magnitude and blend of induced volatile emissions during pathogen infection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge