English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2009-Nov

Phytophthora taxon niederhauserii, a New Root and Crown Rot Pathogen of Banksia spp. in Italy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Cacciola
S Scibetta
P Martini
C Rizza
A Pane

Keywords

Abstract

In the last 10 years, various species of Banksia (family Proteaceae) endemic to Australia have been introduced into Italy where cultivation as flower plants is expanding. In the spring of 2003, a decline associated with root and basal stem rot of 2- to 3-year-old plants of Banksia speciosa R. Br., B. baxteri R. Br., and B. prionotes Lindl. grown in the ground was observed in a commercial nursery in Liguria (northern Italy). Aboveground symptoms included leaf chlorosis and wilt. Plants collapsed within 1 to 2 weeks after the appearance of leaf symptoms. A Phytophthora species was consistently isolated from roots and basal stem on BNPRAH selective medium (3). On V8 juice agar (V8A), axenic cultures obtained by single hyphal transfers formed stellate to radiate colonies with aerial mycelium; on potato dextrose agar (PDA). the colonies showed stoloniform mycelium. Minimum and maximum growth temperatures on PDA and V8A were between 5 and 10°C and 38 and 40°C, respectively, with the optimum at 30°C on PDA (mean radial growth rate of 10 isolates ranged between 9.3 and 10.2 mm per day) and 25 to 30°C on V8A (14 mm per day). In saline solution and soil extract, all isolates produced catenulate hyphal swellings and ellipsoid, nonpapillate, persistent sporangia. Sporangia in saline solution varied from 47 to 70 × 30 to 44 μm (mean l/b ratio of 1.5). All isolates were A1 mating type and produced oogonia with amphyginous antheridia when paired with A2 mating type of P. drechsleri Tucker on V8A plus β-sytosterol (3). The electrophoretic patterns of total mycelial proteins and two isozymes (esterase and malate dehydrogenase) (2) of all isolates from Banksia plants were identical, but distinct from the patterns of isolates of other Phytophthora species, including P. drechsleri, P. megasperma sensu stricto, and P. sojae. Internal transcribed spacer (ITS) regions of rDNA were amplified with primers ITS4/ITS6 and sequences of two isolates, IMI 393960 from B. speciosa and 466/03 from B. baxteri (GenBank Nos. FJ648808 and FJ648809), were 100% identical to sequences of isolates identified as Phytophthora taxon niederhauserii Z. G. Abad and J. A. Abad (GenBank Nos. AY550916, AM942765, and EU244850). Pathogenicity tests were performed on 1-year-old potted plants of B. speciosa with isolates IMI 393960 and 466/03. Twenty plants per each isolate were transplanted into 12-cm-diameter pots containing infested soil prepared by mixing steam-sterilized sandy loam soil with 1% of inoculum produced on autoclaved wheat kernels. Twenty control plants were grown in autoclaved soil mix. Plants were kept in the greenhouse with natural light at 25 ± 2°C and watered to field capacity weekly. All Banksia plants transplanted in infested soil showed symptoms of wilt, leaf chlorosis, and basal stem rot within 2 to 3 weeks. Noninoculated plants remained healthy. P. taxon niederhauserii was reisolated solely from inoculated plants. P. taxon niederhauserii has been reported recently from Banksia spp. in Australia (1), but to our knowledge this is the first report from Italy. P. taxon niederhauserii may represent a threat to the cultivation of many ornamentals including Cystus spp., English ivy, and laurel (4). References: (1) T. I. Burgess et al. Plant Dis. 93:215, 2009. (2) S. O. Cacciola et al. EPPO Bull. 20:47, 1990. (3) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (4) E. Moralejo et al. Plant Pathol, 58:100, 2009.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge