English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2001-May

Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
I Tolay
B Erenoglu
V Römheld
H J Braun
I Cakmak

Keywords

Abstract

Using three diploid (Triticum monococcum, AA), three tetraploid (Triticum turgidum, BBAA), two hexaploid (Triticum aestivum and Triticum compactum, BBAADD) wheats and two Aegilops tauschii (DD) genotypes, experiments were carried out under controlled environmental conditions in nutrient solution (i) to study the relationships between the rates of phytosiderophore (PS) release from the roots and the tolerance of diploid, tetraploid, and hexaploid wheats and AE: tauschii to zinc (Zn) and iron (Fe) deficiencies, and (ii) to assess the role of different genomes in PS release from roots under different regimes of Zn and Fe supply. Phytosiderophores released from roots were determined both by measurement of Cu mobilized from a Cu-loaded resin and identification by using HPLC analysis. Compared to tetraploid wheats, diploid and hexaploid wheats were less affected by Zn deficiency as judged from the severity of leaf symptoms. Aegilops tauschii showed very slight Zn deficiency symptoms possibly due to its slower growth rate. Under Fe-deficient conditions, all wheat genotypes used were similarly chlorotic; however, development of chlorosis was first observed in tetraploid wheats. Correlation between PS release rate determined by Cu-mobilization test and HPLC analysis was highly significant. According to HPLC analysis, all genotypes of Triticum and AE: tauschii species released only one PS, 2'-deoxymugineic acid, both under Fe and Zn deficiency. Under Zn deficiency, rates of PS release in tetraploid wheats averaged 1 micromol x (30 plants)(-1) x (3 h)(-1), while in hexaploid wheats rate of PS release was around 14 micromol x (30 plants)(-1) x (3 h)(-1). Diploid wheats and AE: tauschii accessions behaved similarly in their capacity to release PS and intermediate between tetraploid and hexaploid wheats regarding the PS release capacity. All Triticum and Aegilops species released more PS under Fe than Zn deficiency, particularly when the rate of PS release was expressed per unit dry weight of roots. On average, the rates of PS release under Fe deficiency were 3.0, 5.7, 8.4, and 16 micromol x (30 plants)(-1) x (3 h)(-1) for AE: tauschii, diploid, tetraploid and hexaploid wheats, respectively. The results of the present study show that the PS release mechanism in wheat is expressed effectively when three genomes, A, B and D, come together, indicating complementary action of the corresponding genes from A, B and D genomes to activate biosynthesis and release of PS.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge