English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2019-Nov

Pinocembrin attenuates autonomic dysfunction and atrial fibrillation susceptibility via inhibition of the NF-κB/TNF-α pathway in a rat model of myocardial infarction.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tianxin Ye
Cui Zhang
Gang Wu
Weiguo Wan
Jinjun Liang
Xin Liu
Dishiwen Liu
Bo Yang

Keywords

Abstract

Previous studies indicate that myocardial infarction (MI) may contribute to atrial fibrillation (AF). Emerging evidence has shown that pinocembrin protects myocardial ischemic injury (I/R)-induced cardiac fibrosis and arrhythmias in animals via its anti-inflammatory or antioxidant activities. However, the effects of pinocembrin on MI-induced atrial arrhythmias remain unknown. Thus, this study aimed to investigate the effects of pinocembrin on autonomic dysfunction and AF susceptibility in MI rats and the possible mechanism. In a standard experimental MI model, Sprague-Dawley rats received permanent ligation of the left anterior descending (LAD) coronary artery and were treated with pinocembrin or saline for 6 days. Our results demonstrated that pinocembrin treatment significantly decreased sympathetic activity, augmented parasympathetic activity, improved heart rate variability (HRV), prolonged the atrial effective refractory period (ERP) and action potential duration (APD), shortened activation latency (AL), lowered the indicibility rate of AF, attenuated atrial fibrosis, and decreased concentrations of norepinephrine (NE), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in the serum and the left atrial (LA). Furthermore, pinocembrin treatment significantly increased the expression levels of Cx43 and Cav1.2 and suppressed the phosphorylation of inhibitor-κBα (IκBα) and the activation of nuclear factor-kappa B (NF-κB)subunit p65. In conclusion, the findings indicate that pinocembrin treatment decreases autonomic remodeling, lowers atrial fibrosis, ameliorates atrial electrical remodeling, and suppresses MI-induced inflammatory responses, which suggests a potential novel strategy for atrial arrhythmias.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge