English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2006-Aug

Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hiroyuki Kasahara
Ying Jiao
Diana L Bedgar
Sung-Jin Kim
Ann M Patten
Zhi-Qiang Xia
Laurence B Davin
Norman G Lewis

Keywords

Abstract

A phenylpropenal double-bond reductase (PPDBR) was obtained from cell suspension cultures of loblolly pine (Pinus taeda L.). Following trypsin digestion and amino acid sequencing, the cDNA encoding this protein was subsequently cloned, with the functional recombinant protein expressed in Escherichia coli and characterized. PPDBR readily converted both dehydrodiconiferyl and coniferyl aldehydes into dihydrodehydrodiconiferyl and dihydroconiferyl aldehydes, when NADPH was added as cofactor. However, it was unable to reduce directly either the double bond of dehydrodiconiferyl or coniferyl alcohols in the presence of NADPH. During this reductive step, the corresponding 4-proR hydrogen was abstracted from [4R-3H]-NADPH during hydride transfer. This is thus the first report of a double-bond reductase involved in phenylpropanoid metabolism, and which is presumed to be involved in plant defense. In situ mRNA hybridization indicated that the PPDBR transcripts in P. taeda stem sections were localized to the vascular cambium, as well as to radial and axial parenchyma cell types. Additionally, using P. taeda cell suspension culture crude protein extracts, dehydrodiconiferyl and coniferyl alcohols could be dehydrogenated to afford dehydrodiconiferyl and coniferyl aldehydes. Furthermore, these same extracts were able to convert dihydrodehydrodiconiferyl and dihydroconiferyl aldehydes into the corresponding alcohols. Taken together, these results indicate that in the crude extracts dehydrodiconiferyl and coniferyl alcohols can be converted to dihydrodehydrodiconiferyl and dihydroconiferyl alcohols through a three-step process, i.e. by initial phenylpropenol oxidation, then sequential PPDBR and phenylpropanal reductions, respectively.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge