English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolic Brain Disease 2014-Mar

Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Giovana Reche Dalazen
Melaine Terra
Carlos Eduardo Diaz Jacques
Juliana G Coelho
Raylane Freitas
Priscila Nicolao Mazzola
Carlos Severo Dutra-Filho

Keywords

Abstract

Pipecolic acid (PA) levels are increased in severe metabolic disorders of the central nervous system such as Zellweger syndrome, infantile Refsum disease, neonatal adrenoleukodystrophy and hyperlysinemia. The affected individuals present progressive neurological dysfunction, hypotonia and growth retardation. The mechanisms of brain damage of these disorders remain poorly understood. Since PA catabolism can produce H2O2 by oxidases, oxidative stress may be a possible mechanism involved in the pathophysiology of these diseases. Lipoic acid (LA) is considered an efficient antioxidant and has been shown to prevent oxidative stress in experimental models of many disorders of the neurologic system. Considering that to our knowledge no study investigated the role of PA on oxidative stress, in the present work we investigated the in vitro effects of PA on some oxidative stress parameters and evaluated the LA efficacy against possible pro-oxidant effects of PA in cerebral cortex of 14-day-old rats. The activities of catalase (CAT), glutathione peroxidase (GPx), glucose 6-phosphate dehydrogenase (G6PD), and glutathione S-transferase (GST) along with reduced glutathione (GSH) content were significantly decreased, while superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBA-RS) were significantly enhanced by PA. LA was able to prevent these effects by improving the activity of antioxidant enzymes, increasing GSH content and reducing TBA-RS. In contrast, glutathione reductase and 6-phosphogluconate dehydrogenase activities and sulfhydryl content were not affected. Taken together, it may be presumed that PA in vitro elicits oxidative stress and LA is able to prevent these effects.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge