English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2015

Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hengjie Yuan
Katie L Houck
Ye Tian
Uddalak Bharadwaj
Ken Hull
Zhou Zhou
Mingzhao Zhu
Mingzhao Zhou
Xiaoping Wu
David J Tweardy

Keywords

Abstract

BACKGROUND

Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known.

OBJECTIVE

We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen.

RESULTS

PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect.

CONCLUSIONS

PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge