English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2002-Mar

Planar three-coordinate high-spin Fe(II) complexes with large orbital angular momentum: Mössbauer, electron paramagnetic resonance, and electronic structure studies.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hanspeter Andres
Emile L Bominaar
Jeremy M Smith
Nathan A Eckert
Patrick L Holland
Eckard Münck

Keywords

Abstract

Mössbauer spectra of [LFe(II)X](0) (L = beta-diketiminate; X = Cl(-), CH(3)(-), NHTol(-), NHtBu(-)), 1.X, were recorded between 4.2 and 200 K in applied magnetic fields up to 8.0 T. A spin Hamiltonian analysis of these data revealed a spin S = 2 system with uniaxial magnetization properties, arising from a quasi-degenerate M(S) = +/-2 doublet that is separated from the next magnetic sublevels by very large zero-field splittings (3/D/ > 150 cm(-1)). The ground levels give rise to positive magnetic hyperfine fields of unprecedented magnitudes, B(int) = +82, +78, +72, and +62 T for 1.CH(3), 1.NHTol, 1.NHtBu, and 1.Cl, respectively. Parallel-mode EPR measurements at X-band gave effective g values that are considerably larger than the spin-only value 8, namely g(eff) = 10.9 (1.Cl) and 11.4 (1.CH(3)), suggesting the presence of unquenched orbital angular momenta. A qualitative crystal field analysis of g(eff) shows that these momenta originate from spin-orbit coupling between energetically closely spaced yz and z(2) 3d-orbital states at iron and that the spin of the M(S) = +/-2 doublet is quantized along x, where x is along the Fe-X vector and z is normal to the molecular plane. A quantitative analysis of g(eff) provides the magnitude of the crystal field splitting of the lowest two orbitals, /epsilon(yz) - epsilon(2)(z)/ = 452 (1.Cl) and 135 cm(-1) (1.CH(3)). A determination of the sign of the crystal field splitting was attempted by analyzing the electric field gradient (EFG) at the (57)Fe nuclei, taking into account explicitly the influence of spin-orbit coupling on the valence term and ligand contributions. This analysis, however, led to ambiguous results for the sign of epsilon(yz) - epsilon(2)(z). The ambiguity was resolved by analyzing the splitting Delta of the M(S) = +/-2 doublet; Delta = 0.3 cm(-1) for 1.Cl and Delta = 0.03 cm(-)(1) for 1.CH(3). This approach showed that z(2) is the ground state in both complexes and that epsilon(yz) - epsilon(2)(z) approximately 3500 cm(-1) for 1.Cl and 6000 cm(-1) for 1.CH(3). The crystal field states and energies were compared with the results obtained from time-dependent density functional theory (TD-DFT). The isomer shifts and electric field gradients in 1.X exhibit a remarkably strong dependence on ligand X. The ligand contributions to the EFG, denoted W, were expressed by assigning ligand-specific parameters: W(X) to ligands X and W(N) to the diketiminate nitrogens. The additivity and transferability hypotheses underlying this model were confirmed by DFT calculations. The analysis of the EFG data for 1.X yields the ordering W(N(diketiminate)) < W(Cl) < W(N'HR), W(CH(3)) and indicates that the diketiminate nitrogens perturb the iron wave function to a considerably lesser extent than the monodentate nitrogen donors do. Finally, our study of these synthetic model complexes suggests an explanation for the unusual values for the electric hyperfine parameters of the iron sites in the Fe-Mo cofactor of nitrogenase in the M(N) state.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge