English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2004-Apr

Plasmodium falciparum purine nucleoside phosphorylase: crystal structures, immucillin inhibitors, and dual catalytic function.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wuxian Shi
Li-Min Ting
Gregory A Kicska
Andrzej Lewandowicz
Peter C Tyler
Gary B Evans
Richard H Furneaux
Kami Kim
Steve C Almo
Vern L Schramm

Keywords

Abstract

Purine nucleoside phosphorylase from Plasmodium falciparum (PfPNP) is an anti-malarial target based on the activity of Immucillins. The crystal structure of PfPNP.Immucillin-H (ImmH).SO(4) reveals a homohexamer with ImmH and SO(4) bound at each catalytic site. A solvent-filled cavity close to the 5'-hydroxyl group of ImmH suggested that PfPNP can accept additional functional groups at the 5'-carbon. Assays established 5'-methylthioinosine (MTI) as a substrate for PfPNP. MTI is not found in human metabolism. These properties of PfPNP suggest unusual purine pathways in P. falciparum and provide structural and mechanistic foundations for the design of malaria-specific transition state analogue inhibitors. 5'-Methylthio-Immucillin-H (MT-ImmH) was designed to resemble the transition state of PfPNP and binds to PfPNP and human-PNP with K(d) values of 2.7 and 303 nm, respectively, to give a discrimination factor of 112. MT-ImmH is the first inhibitor that favors PfPNP inhibition. The structure of PfPNP.MT-ImmH.SO(4) shows that the hydrophobic methylthio group inserts into a hydrophobic region adjacent to the more hydrophilic 5'-hydroxyl binding site of ImmH. The catalytic features of PfPNP indicate a dual cellular function in purine salvage and polyamine metabolism. Combined metabolic functions in a single enzyme strengthen the rationale for targeting PfPNP in anti-malarial action.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge