English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Surgical Research 2000-Feb

Platelet-activating factor and bacteremia-induced pulmonary hypertension.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
L C Clavijo
M B Carter
P J Matheson
L A Wills-Frank
M A Wilson
W B Wead
R N Garrison

Keywords

Abstract

BACKGROUND

Acute lung injury is a common complication of gram-negative sepsis. Pulmonary hypertension and increased lung vascular permeability are central features of lung injury following experimental bacteremia. Platelet-activating factor is a prominent proinflammatory mediator during bacterial sepsis. Our previous studies have demonstrated that exogenous administration of platelet-activating factor (PAF) induces pulmonary edema without causing pulmonary hypertension. Interestingly, inhibition of PAF activity during Escherichia coli bacteremia prevents the development of both pulmonary hypertension and pulmonary edema. These data suggest that PAF contributes to pulmonary hypertension during sepsis, but that this is unlikely to be a direct vascular effect of PAF. The goal of the present study was to investigate the mechanism by which acute E. coli bacteremia induces pulmonary injury and to define the role that PAF plays in this injury. We hypothesized that the effects of PAF on pulmonary hypertension during bacteremia are due to the effects of PAF on other vascular mediators. Several studies suggest that PAF induces the expression of endothelin-1 (ET), a potent peptide vasoconstrictor. Further, our previous studies have implicated ET as a central mediator of systemic vasoconstriction during bacteremia. We therefore sought to assess whether ET is modulated by PAF. E. coli has also been demonstrated to increase endothelial production of nitric oxide (NO), which contributes to maintenance of basal vascular tone in the pulmonary circulation. We hypothesized that PAF might increase pulmonary vascular resistance during bacteremia by activating neutrophils, increasing expression of ET, and decreasing the tonic release of NO. Furthermore, we hypothesized that hypoxic vasoconstriction did not contribute to pulmonary vasoconstriction during the first 120 min of E. coli bacteremia.

METHODS

Pulmonary artery pressure (PAP), blood pressure (BP), heart rate (HR), and arterial blood gases (ABG) were measured in anesthetized spontaneously breathing adult male Sprague-Dawley rats. E. coli (10(9) CFU/100 g body wt) was injected at t = 0, and hemodynamic data were obtained at 10-min intervals and ABG data at 30-min intervals for a total of 120 min. Sham animals were treated equally but received normal saline in place of E. coli. In treatment groups, a 2.5 mg/kg dose of WEB 2086, a PAF receptor antagonist, was administered intravenously 15 min prior to the onset of sepsis or sham sepsis. The groups were (1) intravenous E. coli (n = 5); (2) intravenous WEB 2086 pretreatment + intravenous E. coli (n = 5); (3) intravenous WEB 2086 alone (n = 5); and (4) intravenous normal saline (n = 6). Nitric oxide metabolites (NOx) and ET concentrations were assayed from arterial serum samples obtained at the end of the protocol. Lung tissue was harvested for measurement of myeloperoxidase (MPO) activity and pulmonary histology.

RESULTS

E. coli bacteremia increased HR, PAP, and respiratory rate early during sepsis (within 20 min), while hypoxemia, hypotension, and hemoconcentration were not manifest until the second hour. Pretreatment with WEB 2086 completely abrogated all of these changes. E. coli bacteremia increased the activity of serum ET, lung MPO, and neutrophil sequestration in the lung parenchyma via a PAF-dependent mechanism. However, the mechanism of increased production of NO appears to be PAF independent.

CONCLUSIONS

These data support the hypothesis that E. coli bacteremia rapidly induces pulmonary hypertension stimulated by PAF and mediated at least in part by endothelin-1 and neutrophil activation and sequestration in the lung. Microvascular injury with leak is also mediated by PAF during E. coli bacteremia, but the time course of resultant hypoxemia and hemoconcentration is slower than that of pulmonary hypertension. The contribution of hypoxic vasoconstriction in exacerbating pulmonary hypertension in gram-negative sepsis is probably a late

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge